
Navigation and Ancillary Information Facility

N IF

Exception Handling

January 2008

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 2

N IF

• What Exceptions Are

• Language Dependencies

• C and Fortran Error Handling Features

• Error Messages

• Error Handling Actions

• Error Device

• Customize Error Handling

• Get Error Status

• Signal Errors

• Icy Error Handling

• Mice Error Handling

• Recommendations

Topics

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 3

N IF

• Run time error conditions
– Files

» Required files not loaded.
» Gaps in data.
» Corrupted or malformed files (e.g. ftp Õd in wrong mode).

– Invalid subroutine/function arguments
» String values unrecognized.
» Numeric values out of range.

» Data type/dimension mismatch.
– Arithmetic errors

» Divide by zero, square root of a negative number.

– Environment problems
» Insufficient disk space for output files.
» Lack of required read/write permission/privileges.

Exceptions AreÉ - 1

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 4

N IF

• Valid but unusual conditions
– Examples are:

» Normalize the zero vector.
» Find the rotation axis of the identity matrix.
» Find the boresight intercept lat/lon for a non-intercept case.
» Find a substring where the end index precedes the start index.

– Such cases are normally not SPICE ÒError Conditions Ó
– Typically must be handled by a logical branch

• Errors found by analysis tools, such as parsers
– Examples are:

» Invalid SQL query.
» Invalid string representing number (borderline case).

– Such cases are normally not SPICE ÒError Conditions Ó
– However, if a SPICE parsing routine failed because it couldn Õt open

a scratch file, THAT would be an Òerror condition. Ó

Exceptions AreÉ - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 5

N IF Language Dependencies

• SPICELIB and CSPICE provide essentially identical error
handling capabilities.

• Icy and Mice provide similar error handling functionality;
this functionality is quite different from that of CSPICE.
– These systems do rely on CSPICE for most error detection.
– Icy and Mice provide no API for customizing underlying CSPICE error

handling behavior.
– Short, long, and traceback error messages are merged into a single,

parsable, message.
– Use IDL or MATLAB features to customize error handling.

» Prevent your program from stopping
» Capture SPICE error messages

• Most of this tutorial deals with SPICELIB and CSPICE error
handling.
– There is a bit on Icy and Mice near the end.

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 6

N IF

• Error handling in SPICE: safety first
– Trap errors where they occur; don Õt let them propagate

» DonÕt let errors Òfall through Ó to the operating system.
– Supply meaningful diagnostic messages

» Incorporate relevant run-time data.
» Supply context in human-readable form.

– DonÕt depend on callers to handle errors

» Normally, Òerror flags Ó are not returned to callers.
– Stop unless told not to

» DonÕt try to continue by making Òsmart guesses. Ó

• Subroutine interface for error handling
– Interface routines called within SPICE may be called by users Õ

application programs

Fortran and C Error Handling Features - 1

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 7

N IF

• Signal errors
– Create descriptive messages when and where an error is detected

» Short message, long message, (explanation), traceback
– ÒSignal Ó the error: set error status, output messages

» By default, CSPICE error output goes to stdout (not stderr)

• Retrieve error information
– Get status and error messages via subroutine calls

• Customize error response---actions taken when an
error occurs.
– Set error handling mode (Òaction Ó)
– Set error output device
– Set message selection

• Inhibit tracing
– To improve run-time performance (only for thoroughly debugged

code)

Fortran and C Error Handling Features - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 8

N IF

• Short message
– Up to 25 characters.
– Can easily be compared with expected value.

» Example: SPICE(FILEOPENFAILED).

• Long message
– Up to 1840 characters.

– Can contain values supplied at run time.
» Example: 'The file <sat077.bsp> was not found.'

• Traceback
– Shows call tree above routine where error was signaled.

» Not dependent on system tracing capability.

» DonÕt need a Òcrash Ó to obtain a traceback.

Error Messages

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 9

N IF

• ABORT
– Designed for safety.

» Output messages and traceback to your screen or stdout.
» Stop program; return status code if possible.

• RETURN
– For use in programs that must keep running.

– Attempts to return control to the calling application.
– Preserves error information so calling application can respond.

» Output messages to current error device.

» Set error status to ÒtrueÓ: FAILED() will return Òtrue.Ó
» Set Òreturn Ó status to ÒtrueÓ: RETURN() will return Òtrue.Ó
» Most SPICE routines will return on entry. Very simple

routines will generally execute anyway.

Error Handling Actions - 1

--continues--

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 10

N IF

» Capture traceback at point where error was signaled.
» Inhibit error message writing and error signaling.
» Must call RESET to resume normal error handling.

Error Handling Actions - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 11

N IF

• Destination of error messages
– Screen/stdout (default)
– Designated file

» Error diagnostics are appended to the file as errors are
encountered.

– ÒNULLÓ --- suppress output
» When the NULL device is specified, error messages can

still be retrieved using API calls.

• Limitations
– In C, cannot send messages to stderr.

– In C, writing to a file opened by means other than calling
errdev_c is possible only if CSPICE routines were used to open
the file.

» These limitations may be removed in a later version of
CSPICE.

Error Device

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 12

N IF

• Set error action
– CALL ERRACT (ÔSETÕ, ÔRETURNÕ)
– erract_c (ÒsetÓ, LEN, Òreturn Ó);

» Length argument is ignored when action is ÒsetÓ; when
action is ÒgetÓ, LEN should be set to the available room in
the output string, for example:

» erract_c (ÒgetÓ, ACTLEN, action);

• Set error device
– CALL ERRDEV (ÔSETÕ, Ôerrlog .txt Õ)
– errdev_c (ÒsetÓ, LEN, Òerrlog .txt Ó);

• Select error messages
– CALL ERRPRT (ÔSETÕ, ÔNONE, SHORT, TRACEBACK Õ)

» If tracing is disabled, selecting TRACEBACK has no effect.
– errprt_c (ÒsetÓ, LEN, Ònone, short, traceback Ó);

Customize Error Handling - 1

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 13

N IF

• Disable tracing
– Normally done to speed up execution
– Benefit is highly dependent on application
– Speed-up has been a few percent to roughly 30%

» High end estimate based on older, slower tracing
implementation.

– Use TRCOFF:
» CALL TRCOFF or trcoff_c ();

• When used, should be done at start of your program.

• You cannot re-enable tracing during a program run.

Customize Error Handling - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 14

N IF

• Use FAILED to determine whether an error has
been signaled
– IF (FAILED()) THEN …
– if (failed_c()) { É

• Use FAILED after calling one or more SPICE
routines in a sequence
– Normally, it Õs safe to call a series of SPICE routines without

testing FAILED after each call

• Use GETMSG to retrieve short or long error
messages
– CALL GETMSG (‘SHORT’, SMSG)
– getmsg_c (“short”, LEN, smsg);

Get Error Status - 1

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 15

N IF

• Use QCKTRC or TRCDEP and TRCNAM to retrieve
traceback message
– In CSPICE, only f2c Õd versions of these routines are available

• Test value of RETURN() to determine whether
routines should return on entry
– Only relevant if user code is designed to support RETURN

mode

• Handle error condition, then reset error status:
– CALL RESET
– reset_c();
– Only handle error condition in Icy-based applications; a reset

is automatically performed by Icy

Get Error Status - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 16

N IF

• Create long error message
– Up to 1840 characters
– Use SETMSG

» CALL SETMSG (‘File <#> was not found.’)
» setmsg_c (“File <#> was not found.”);

• Substitute string, integer, or d.p values at run time
– Use ERRCH

» CALL ERRCH (‘#’, ‘cassini.bsp’)
» errch_c (“#”, “cassini.bsp”);

– Also can use ERRINT, ERRDP
– In Fortran, can refer to files by logical unit numbers: ERRFNM

Signal Errors - 1

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 17

N IF

• Signal error
– Use SIGERR to signal error. Supply short error message as

input to SIGERR.
» CALL SIGERR (‘FILE OPEN FAILED’)
» sigerr_c (“FILE OPEN FAILED”);

– ÒSignaling Ó error causes SPICE error response to occur
» Output messages, if enabled
» Set error status

» Set return status, if error action is RETURN
» Inhibit further error signaling if in RETURN mode
» Stop program if in abort mode

• Reset error status after handling error
– CALL RESET()
– reset_c()

Signal Errors - 2

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 18

N IF
• Error action:

– By default, a SPICE error signal stops execution of IDL scripts; a SPICE error
message is displayed; control returns to the execution level (normally the
command prompt).

– Icy sets the CSPICE shared object libraryÕs error handling system to RETURN
mode. No other modes are used.
» The CSPICE error state is reset after detecting an error.

– Use the IDL CATCH feature to respond to error condition.

• Error status
– Value of !error_state.name

» ICY_M_BAD_IDL_ARGS - indicates invalid argument list.
» ICY_M_SPICE_ERROR - indicates occurrence of a SPICE error.

• Error message
– CSPICE short, long, and traceback error messages are merged into a single,

parsable, message.
» The merged error message is contained in the variable !error_state.msg.
» Example:
 CSPICE_ET2UTC: SPICE(MISSINGTIMEINFO): [et2utc->ET2UTC->UNITIM]
 The following, needed to convert between the
 uniform time scales, could not be found in the
 kernel pool: DELTET/DELTA_T_A, DELTET/K,
 DELTET/EB, DELTET/M. Your program may have failed to load…

Icy Error Handling

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 19

N IF
• Error action:

– By default, a SPICE error signal stops execution of MATLAB scripts; a SPICE
error message is displayed; control returns to the execution level.

– Mice sets the CSPICE shared object libraryÕs error handling system to RETURN
mode. No other modes are used.
» The CSPICE error state is reset after detecting an error.

– Use the MATLAB try/catch construct to respond to error condition.

• Error message
– CSPICE short, long, and traceback error messages are merged into a single,

parsable, message.
» Example:
 ??? SPICE(MISSINGTIMEINFO): [et2utc->ET2UTC->UNITIM]
 The following, needed to convert between the
 uniform time scales, could not be found in the
 kernel pool: DELTET/DELTA_T_A, DELTET/K,
 DELTET/EB, DELTET/M. Your program may have failed to load…

• Use the MATLAB function lasterror to retrieve SPICE error
diagnostics. When a SPICE error occurs
– The ÒmessageÓ field of the structure returned by lasterror contains the SPICE

error message.
– The ÒstackÓ field of this structure refers to the location in the m-file from which

the Mice wrapper was called (and so is generally not useful).
– The ÒidentifierÓ field of this structure currently is not set.

Mice Error Handling

Navigation and Ancillary Information Facility

SPICE Toolkit Exception Handling 20

N IF

• For easier problem solving
– Leave tracing enabled when debugging.
– Always test FAILED after a sequence of one or more

consecutive calls to SPICE routines.
– DonÕt throw away error output. It may be the only reasonable

clue as to what Õs going wrong.
» Programs that must suppress SPICE error output should

trap it and provide a means for retrieving it.
• Test FAILED to see whether an error occurred.

• Use GETMSG to retrieve error messages

• Use RESET to clear the error condition

– Use SPICE error handling in your own code where appropriate.

– When reporting errors to NAIF, have SPICE error message
output available
» Note whether error output is actually from SPICE routines,

from non-SPICE code, or was generated at the system level.

Recommendations

